Frontal vitrification of PDMS using air plasma and consequences for surface wrinkling.
نویسندگان
چکیده
We study the surface oxidation of polydimethylsiloxane (PDMS) by air plasma exposure and its implications for the mechanically-induced surface wrinkling of the resulting glass-elastomer bilayers. The effect of plasma frequency (kHz and MHz), oxygen content (from O2 to air), pressure (0.5 ≤ P ≤ 1.5 mbar), as well as exposure time and power, is quantified in terms of the resulting glassy skin thickness h, inferred from wrinkling experiments. The glassy skin thickness is found to increase logarithmically with an exposure time t, for different induction powers p, and all data collapse in terms of a plasma dose, D ≡ p × t. The kinetics of film propagation are found to increase with the oxygen molar fraction yO2 and decrease with the gas pressure P, allowing both the wrinkling wavelength λ and amplitude A to be effectively controlled by gas pressure and composition. A generalised relationship for frontal vitrification is obtained by re-scaling all λ and h data by D/P. A coarse-grained wave propagation model effectively describes and quantifies the process stages (induction, skin formation and propagation) under all the conditions studied. Equipped with this knowledge, we further expand the capabilities of plasma oxidation for PDMS wrinkling, and a wavelength of λ ≈ 100 nm is readily attained with a modest strain εprestrain ≈ 20%.
منابع مشابه
Wavefront kinetics of plasma oxidation of polydimethylsiloxane: limits for sub-μm wrinkling.
We investigate the surface plasma oxidation of polydimethylsiloxane (PDMS) elastomers and its implication for the morphologies attainable by wrinkling of glassy-elastomer 'bilayers'. The kinetics of glassy skin formation is found to follow a logarithmic dependence with plasma exposure time t and, for various plasma intensities I, the relevant control variable is shown to be dose (≡I × t). We mo...
متن کاملSurface Modification of Silicone Rubber Membrane by Microwave Discharge to Improve Biocompatibility
Wetability of biocompatible polymers can be improved by plasma surface modification. The purpose of this study was to surface modify an experimental poly (dimethylsiloxane) rubber (PDMS) material in order to improve its wetability and biocompatibility. Surface properties of the PDMS were characterized using contact angles measurement for wetability analysis. Samples of experimental silico...
متن کاملWrinkling Measurement of the Mechanical Properties of Drying Salt Thin Films.
We report a time-resolved approach to probe the mechanical properties of thin films during drying and solidification based on surface wrinkling. The approach is demonstrated by measuring the modulus of a ternary system comprising an inorganic salt (aluminum chlorohydrate), a humectant (glycerol), and water across the glassy film formation pathway. The topography of mechanically induced wrinklin...
متن کاملPatterning PDMS using a combination of wet and dry etching
PDMS films of 10 μm thickness can be patterned within 30 min by combining dry etching to achieve substantially vertical sidewalls with wet etching to achieve high etch rates and to protect the underlying substrate from attack. Dry etching alone would have taken 5 h, and wet etching alone would produce severe undercutting. In addition, using either technique alone produces undesirable surface mo...
متن کاملTunable Nanochannels Fabricated by Mechanical Wrinkling/Folding of a Stiff Skin on a Soft Polymer
DOI: 10.1002/admi.201400493 wavelength and amplitude ( Figure 1 a). Further increase in the strain level triggered the transition from wrinkles to folds, creating well-defi ned closed channels with a diameter in the nanoscale range (Figure 1 b). The characteristic dimensions of the channels such as wavelength, amplitude, and diameter were robustly tunable by changing the duration of oxygen plas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 11 15 شماره
صفحات -
تاریخ انتشار 2015